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ABSTRACT
Traffic flow prediction is crucial for urban traffic management and
public safety. Its key challenges lie in how to adaptively integrate
the various factors that affect the flow changes. In this paper, we
propose a unified neural network module to address this problem,
called Attentive Crowd Flow Machine (ACFM), which is able to
infer the evolution of the crowd flow by learning dynamic represen-
tations of temporally-varying data with an attention mechanism.
Specifically, the ACFM is composed of two progressive ConvL-
STM units connected with a convolutional layer for spatial weight
prediction. The first LSTM takes the sequential flow density repre-
sentation as input and generates a hidden state at each time-step for
attention map inference, while the second LSTM aims at learning
the effective spatial-temporal feature expression from attentionally
weighted crowd flow features. Based on the ACFM, we further build
a deep architecture with the application to citywide crowd flow pre-
diction, which naturally incorporates the sequential and periodic
data as well as other external influences. Extensive experiments
on two standard benchmarks (i.e., crowd flow in Beijing and New
York City) show that the proposed method achieves significant
improvements over the state-of-the-art methods.
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Figure 1: Visualization of two crowd flow maps in Beijing
and New York City.We partition a city into a gridmap based
on the longitude and latitude and generate the crowd flow
maps bymeasuring the number of crowd in each regionwith
mobility data (e.g., GPS signals ormobile phone signals). The
weight of each grid indicates the flow density of a time pe-
riod at a specific area.
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1 INTRODUCTION
Crowd flow prediction is crucial for traffic management and public
safety, and has drawn a lot of research interests due to its huge
potentials in many intelligent applications, including intelligent
traffic diversion and travel optimization.

Nowadays, we live in an era where ubiquitous digital devices
are able to broadcast rich information about human mobility in
real-time and at a high rate, which exponentially increases the
availability of large-scale mobility data (e.g., GPS signals or mobile
phone signals). In this paper, we generate the crowd flow maps
from these mobility data and utilize the historical crowd flow maps
to forecast the future crowd flow of a city. As shown in Fig. 1, we
partition a city into a grid map based on the longitude and latitude,
and measure the number of pedestrians in each region at each time
interval with themobility data. Although the regional scale can vary
greatly in different cities, the core problem lies in excavating the
evolution of traffic flow in different spatial and temporal regions.

Recently, notable successes have been achieved for citywide
crowd flow prediction based on deep neural networks coupled with
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certain spatial-temporal priors [35, 36]. Nevertheless, there still ex-
ist several challenges limiting the performance of crowd flow anal-
ysis in complex scenarios. First, crowd flow data can vary greatly
in temporal sequence and capturing such dynamic variations is
non-trivial. Second, some periodic laws (e.g., traffic flow suddenly
changing due to rush hours or pre-holiday effects) can greatly af-
fect the situation of crowd flow, which increases the difficulty in
learning crowd flow representations from data.

To solve all above issues, we propose a novel spatial-temporal
neural networkmodule, calledAttentive Crowd FlowMachine (ACFM),
to adaptively exploit diverse factors that affect crowd flow evolution
and at the same time produce the crowd flow estimation map end-
to-end in a unified module. The attention mechanism embedded
in ACFM is designed to automatically discover the regions with
primary positive impacts for the future flow prediction and simul-
taneously adjust the impacts of the different regions with different
weights at each time-step. Specifically, the ACFM comprises two
progressive ConvLSTM [31] units. The first one takes input from i)
the feature map representing flow density at each moment and ii)
the memorized representations of previous moments, to compute
the attentional weights, while the second LSTM aims at generating
superior spatial-temporal feature representation from attentionally
weighted sequential flow density features.

The proposed ACFM has the following appealing properties.
First, it can effectively incorporate spatial-temporal information
in feature representation and can flexibly compose solutions for
crowd flow prediction with different types of input data. Second,
by integrating the deep attention mechanism [20, 24], ACFM adap-
tively learns to represent the weights of each spatial location at
each time-step, which allows the model to dynamically perceive
the impact of the given area at a given moment for the future traffic
flow. Third, ACFM is a general and differentiable module which
can be effectively combined with various network architectures for
end-to-end training.

In addition, for forecasting the citywide crowd flow, we further
build a deep architecture based on the ACFM, which consists of
three components: i) sequential representation learning, ii) peri-
odic representation learning and iii) a temporally-varying fusion
module. The first two components are implemented by two parallel
ACFMs for contextual dependencies modeling at different temporal
scales, while the temporally-varying fusion module is proposed
to adaptively merge the two separate temporal representation for
crowd flow predictions.

The main contributions of this work are three-fold:

• We propose a novel ACFM neural network, which incorpo-
rates two LSTM modules with spatial-temporal attentional
weights, to enhance the crowd flow prediction via adaptively
weighted spatial-temporal feature modeling.
• We integrate ACFM in our customized deep architecture for
citywide crowd flow estimation, which recurrently incor-
porates various sequential and periodic dependencies with
temporally-varying data.
• Extensive experiments on two public benchmarks of crowd
flow prediction demonstrate that our approach outperforms
existing state-of-the-art methods by large margins.

2 RELATEDWORK
Crowd Flow Analysis. Due to the wide application of traffic con-
gestion analysis and public safety monitoring, citywide crowd flow
analysis has recently attracted a wide range of research interest [41].
A pioneer work was proposed by Zheng et al., [40], in which they
proposed to represent public traffic trajectories as graphs or tensor
structures. Inspired by the significant progress of deep learning
on various tasks [5, 17, 18, 37, 38], many researchers also have at-
tempted to handle this task with deep neural network. Fouladgar
et al. [9] introduced a scalable decentralized deep neural networks
for urban short-term traffic congestion prediction. In [36], a deep
learning based framework was proposed to leverage the temporal
information of various scales (i.e. temporal closeness, period and
seasonal) for crowd flow prediction. Following this work, Zhang et
al., [35] further employed a convolution based residual network to
collectively predict inflow and outflow of crowds in every region
of a city grid-map. To take more efficient temporal modeling into
consideration, Dai et al. [6] proposed a deep hierarchical neural
network for traffic flow prediction, which consists of an extraction
layer to extract time-variant trend in traffic flow and a prediction
layer for final crowd flow forecasting. Currently, to overcome the
scarcity of crowd flow data, Wang et al. [27] proposed to learn the
target city model from the source city model with a region based
cross-city deep transfer learning algorithm.

Memory and attention neural networks. Recurrent neural
networks (RNN) have been widely applied to various sequential
prediction tasks [8, 25]. As a variation of RNN, Long Short-Term
Memory Networks (LSTM) enables RNNs to store information over
extended time intervals and exploit longer-term temporal depen-
dencies. It was first applied to the research field of natural language
processing [21] and speech recognition [11], while recently many
researchers have attempted to combine CNN with LSTM to model
the spatial-temporal information for various of computer vision
applications, such as video salient object detection [16], image
caption [23, 30] and action recognition [26]. Visual attention is a
fundamental aspect of human visual system, which refers to the pro-
cess by which humans focus the computational resources of their
brain’s visual system to specific regions of the visual field while
perceiving the surrounding world. It has been recently embedded
in deep convolution networks [4] or recurrent neural networks to
adaptively attend on mission-related regions while processing feed-
forward operation and have been proved effective for many tasks,
including machine translation [21], crowd counting [19], multi-
label image classification [28], face hallucination [3], and visual
question answering [33]. However, no existing work incorporates
attention mechanism in crowd flow prediction.

The most relevant works to us are [32, 39], which also incor-
porate ConvLSTM for spatial-temporal modeling. However, they
are used for consecutive video frames representation and aims to
estimate the crowd counting on a given surveillance image instead
of forecasting crowd flow evolution based on mobility data. More-
over, our proposed ACFM is composed of two progressive LSTM
modules with learnable attention weights, which is not only adept
at modeling spatial-temporal representation, but also efficiently
capturing the effect on the global crowd flow evolution caused by
the changes of traffic conditions in each particular spatial-temporal
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Figure 2: Left: The architecture of the proposed Attentive Crowd Flow Machine (ACFM). ACFM can be applied to adequately
capture various contextual dependencies for crowd flow evolution analysis. Xi denotes the input feature map of the ith iter-
ation. “

⊕
” denotes feature concatenation and “

⊗
” refers to element-wise multiplication. Right: The architecture of the our

citywide crowd flow prediction networks. It consists of sequential representation learning, periodic representation learning
and a temporally-varying fusion module. F td denotes the embedding feature of crowd flow and external factors at the t th time
interval of the dth day. M̂t

d is the predicted crowd flow map. Sf and Pf are sequential representation and periodic representa-
tion, while external factors integrative feature Ef is the element-wise addition of external factors features of all relative time
intervals. The symbols r and (1 − r ) reflect the importance of Sf and Pf respectively.

region (e.g. a traffic jam caused by an accident). Last but not the
least, the attention mechanism embedded in our ACFM module
also helps to improve the interpretability of the network process
while boosting the performance.

3 PRELIMINARIES
In this section, we first describe some basic elements of crowd flow
and then define the crowd flow prediction problem.

Region Partition: There are many ways to divide a city into
multiple regions in terms of different granularities and semantic
meanings, such as road network [7] and zip code tabular. In this
study, following the previous works [34, 35], we partition a city
into h ×w non-overlapping grid map based on the longitude and
latitude. Each rectangular grid represents a different geographical
region in the city. Figure 1 illustrates the partitioned regions of
Beijing and New York City.

Crowd Flow: In practical application, we can extract a mass of
crowd trajectories from GPS signals or mobile phone signals. With
those crowd trajectories, we can measure the number of pedestrians
entering or leaving a given region at each time interval, which
are called inflow and outflow in our work. For convenience, we
denote the crowd flow map at the t th time interval of dth day as
a tensor Mt

d
∈ R2×h×w , of which the first channel is the inflow

and the second channel is the outflow. Some crowd flow maps are
visualized in Figure 5.

External Factors: As mentioned in the previous work [35],
crowd flow can be affected by many complex external factors, such
as meteorology information and holiday information. In this paper,
we also consider the effect of these external factors. The meteorol-
ogy information (e.g., weather condition, temperature and wind
speed) can be collected from some public meteorological websites,

such as Wunderground1. Specifically, the weather condition is cat-
egorized into sixteen categories (e.g., sunny and rainy) and it is
digitized with One-Hot Encoding [12], while temperature and wind
speed are scaled into the range [0, 1] with min-max linear nor-
malization. Multiple categories of holiday 2 (e.g., Chinese Spring
Festival and Christmas) can be acquired from calendar and encoded
into a binary vector with One-Hot Encoding. Finally, we concate-
nate all external factors data to a 1D tensor. The external factors
tensor at the t th time interval of dth day is expressed as a Et

d
in

the following sections.
Crowd Flow Prediction: This problem aims to predict the

crowd flow mapMt
d , given historical crowd flow maps and external

factors data until the (t − 1)th time interval of dth day.

4 ATTENTIVE CROWD FLOWMACHINE
We propose a unified neural network module, named Attentive
Crowd Flow Machine (ACFM), to learn the crowd flow spatial-
temporal representations. ACFM is designed to adequately capture
various contextual dependencies of the crowd flow, e.g., the spa-
tial consistency and the temporal dependency of long and short
term. As shown on the left of Fig. 2, the ACFM is composed of two
progressive ConvLSTM [31] units connected with a convolutional
layer for attention weight prediction at each time step. The first
LSTM (bottom LSTM in the figure) models the temporal depen-
dency through original crowd flow feature embedding (extracted
from CNN), the output hidden state of which is concatenated with
current crowd flow feature and fed to a convolution layer for weight
map inference. The second LSTM (upper LSTM in the figure) is
of the same structure as the first LSTM but takes the re-weighted

1https://www.wunderground.com/
2The categories of holiday are variational in different datasets.

Session: FF-5 MM’18, October 22-26, 2018, Seoul, Republic of Korea

1555

https://www.wunderground.com/


crowd flow features as input at each time-step and is trained to
recurrently learn the spatial-temporal representations for further
crowd flow prediction.

For better understanding, we denote the input feature map of
the ith iteration as Xi ∈ Rc×h×w , with h,w and c representing the
height, width and the number of channels. Following [14], the
hidden state H1

i ∈ R
c×h×w of first LSTM can be formulated as:

H1
i = ConvLSTM(H1

i−1,C
1
i−1,Xi ), (1)

whereC1
i−1 is the memorized cell state of the first LSTM at (i − 1)th

iteration. The internal hidden state H1
i is maintained to model the

dynamic temporal behavior of the previous crowd flow sequences.
We concatenate H1

i and Xi to generate a new tensor, and feed it
to a single convolutional layer with kernel size 1 × 1 to generate
an attention mapWi , which can be expressed as:

Wi = Conv1×1 (H1
i ⊕ Xi ,w ), (2)

where ⊕ denotes feature concatenation and w is the parameters
of the convolutional layer. AndWi indicates the weights of each
spatial location on the feature map Xi . We further reweigh Xi
with an element-wise multiplication according toWi and take the
reweighed map as input to the second LSTM for representation
learning, the hidden stateH2

i ∈ R
c×h×w of which can be formulated

as:
H2
i = ConvLSTM(H2

i−1,C
2
i−1,Xi ∗Wi ), (3)

where ∗ refers to the element-wise multiplication. h2i encodes the
attention-aware content of current input as well as memorizes the
contextual knowledge of previous moments. The output of the last
hidden state thus encodes the information of the whole crowd flow
sequence, and is used as the spatial-temporal representation for
evolution analysis of future flow map. In the next section, we will
show how to incorporate the proposed ACFM in our crowd flow
prediction framework.

5 CITYWIDE CROWD FLOW PREDICTION
We build a deep neural network architecture incorporated with our
proposedACFM to predict citywide crowd flow. As illustrated on the
right of Fig. 2, the crowd flow prediction framework consists of three
components: (1) sequential representation learning, (2) periodic
representation learning and (3) a temporally-varying fusion module.
For the first two parts of the framework, we employ the ACFM
to model the contextual dependencies of crowd flow at different
temporal scales. After that, a temporally-varying fusion module is
proposed to adaptivelymerge the different feature embeddings from
each component with the weight r learned from the concatenation
of respective feature representations and the external information.
Finally, the merged feature map is fed to one additional convolution
layer for crowd flow map inference.

5.1 Sequential Representation Learning
The evolution of citywide crowd flow is usually affected by di-
verse internal and external factors, e.g., current urban traffic and
weather conditions. For instance, a traffic accident occurring on
a city main road at 9 am may seriously affect the crowd flow of
nearby regions in subsequent time periods. Similarly, a sudden rain
may seriously affect the crowd flow in a specific region. To deal

with these issues, we take several continuous crowd flow features
and their corresponding external factors features as the sequential
temporal features, and feed them into our ACFM to recurrently
capture the trend of crowd flow in the short term.

Specifically, we denote the input sequential temporal features
as:

Sin = {F
t−k
d

���k = n,n − 1, ..., 1}, (4)

where n is the length of the sequentially related time intervals
and F ij denotes the embedding features of the crowd flow and
the external factors at the ith time interval of the jth day. The
extraction of embedding feature F ij will be described in Section 5.4.
We apply the proposed ACFM to learn sequential representation
from temporal features Sin . As shown on the right of Fig. 2, the
ACFM recurrently takes each element of Sin as input and learns to
selectively memorize the context of this specific temporally-varying
data. The output hidden state of the last iteration is further fed into
a following convolution layer to generate a feature representation
of size c × h ×w , denoted as Sf , which forms the spatial-temporal
feature embedding of the fine-grained sequential data.

5.2 Periodic Representation Learning
Generally, there exist some periodicities which make a significant
impact on the changes of traffic flow. For example, the traffic con-
ditions are very similar during morning rush hours of consecu-
tive workdays, repeating every 24 hours. Similar with sequential
representation learning described in Section 5.1, we take periodic
temporal features

Pin = {F
t
d−k

���k =m,m − 1, ..., 1}, (5)

to capture the periodic property of crowd flow, wheren is the length
of the periodic days. As shown on the right of Fig. 2, we employ
ACFM to learn periodic representation with the periodic temporal
features P as input. The hidden output of the last iteration of ACFM
is passed through a convolutional layer to generate a representation
Pf ∈ R

c×h×w . The Pf encodes the context of periodic laws, which
is essential for crowd flow prediction.

5.3 Temporally-Varying Fusion
The future crowd flow is affected by the two temporally-varying
representations Sf and Pf . A naive method is to directly merge
those two representations, however it is suboptimal. In this sub-
section, we propose a novel temporally-varying fusion module to
adaptively fuse the sequential representation Sf and the periodic
representation Pf of crowd flow with different weight.

Considering that the external factors may affect the importance
proportion of two representations, we take the sequential repre-
sentation Sf , periodic representation Pf and the external factors
integrative feature Ef to calculate the fusion weight, where Ef is
the element-wise addition of external factors features of all relative
time intervals and will be described in Section 5.4. As shown on the
right of Fig. 2, we first concatenate Sf , Pf and Ef and feed them as
input to two fully-connected layers (the first layer has 512 neurons
and the second has only one neuron) for fusion weight inference.
After a sigmoid function, the temporally-varying fusion module
outputs a single value r ∈ [0, 1], which reflects the importance of
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the sequential representation Sf . And 1 − r is treated as the fusion
weight of periodic representation Pf .

We thenmerge these two temporal representations with different
weight and further reduce the feature to two channels (input and
output flow) with a linear transformation, which can be expressed
as:

Mf = T (r ∗ Sf + (1 − r ) ∗ Pf ). (6)
where T is the linear transformation implemented by a convolution
layer with two filters. The predicted crowd flow map M̂t

d ∈ R
2×h×w

can be computed as

M̂t
d = tanh(Mf ). (7)

where the hyperbolic tangent tan ensures the output values are
within [−1, 1] 3.

5.4 Implementation Details
We first detail the method of extracting crowd flow feature as
well as external factors feature and then describe our network
optimization.

Crowd Flow Feature: For the crowd flow map Mi
j at the i

th

time interval of the jth day, we extract its feature F ij (M ) with a
customized ResNet [13] structure, which is stacked by N residual
units without any down-sampling operations. Each residual unit
contains two convolutional layers followed by two ReLu layers. We
set the channel numbers of all convolutional layers as 16 and the
kernel sizes as 3 × 3.

External Factors Feature: For the external factors Eij , we ex-
tract its feature with a simple neural network implemented by two
fully-connected layers. The first FC layer has 256 neurons and the
second one has 16 × h ×w neurons. The output of the last layer
is further reshaped to a 3D tensor F ij (E) ∈ R

16×h×w , which is the
final feature of Eij .

Finally, we concatenate F ij (M ) and F ij (E) to generate the embed-
ding feature F ij , which can be expressed as

F ij = F ij (M ) ⊕ F ij (E), (8)

where ⊕ denotes feature concatenation. For the external factors
integrative featureEf described in Section 5.3 , it is the element-wise
addition of {Et−kd

���k = n,n − 1, ..., 1} and {E
t
d−k

���k =m,m − 1, ..., 1}.
Network Optimization: We adopt the TensorFlow [1] toolbox

to implement our crowd flow prediction network. The filter weights
of all convolutional layers and fully-connected layers are initialized
by Xavier [10]. The size of a minibatch is set to 64 and the learning
rate is 10−4. We optimize our networks parameters in an end-to-end
manner via Adam optimization [15] by minimizing the Euclidean
loss for 270 epochs with a GTX 1080Ti GPU.

6 EXPERIMENTS
In this section, we first conduct experiments on two public bench-
marks (e.g., TaxiBJ [36] and BikeNYC [36]) to evaluate the perfor-
mance of our model on citywide crowd flow prediction. We further

3When training, we use Min-Max linear normalization method to scale the crowd flow
maps into the range [−1, 1]. When evaluating, we re-scale the predicted value back to
the normal values and then compare with the ground truth.

Model TaxiBJ BikeNYC
SARIMA [29] 26.88 10.56
VAR [22] 22.88 9.92
ARIMA [2] 22.78 10.07
ST-ANN [35] 19.57 -
DeepST [36] 18.18 7.43

ST-ResNet [35] 16.69 6.33
Ours 15.40 5.64

Table 1: Quantitative comparisons on TaxiBJ and BikeNYC
using RMSE (smaller is better). Our proposed method out-
performs the existing state-of-the-art methods on both
datasets with a margin.

conduct an ablation study to demonstrate the effectiveness of each
component in our model.

6.1 Dataset Setting and Evaluation Metric
We forecast the inflow and outflow of citywide crowds on two
datasets: the TaxiBJ [36] dataset for taxicab flow prediction and the
BikeNYC [36] dataset for bike flow prediction.

TaxiBJ Dataset: This dataset contains 22,459 time intervals of
crowd flow maps with a size of 2 × 32 × 32, which are generated
with Beijing taxicab GPS trajectory data. The external factors con-
tain weather conditions, temperature, wind speed and 41 categories
of holiday. For the fair comparison, we refer to [35] and take the
data in the last four weeks as the testing set and the rest as the
training set. In this dataset, we set the sequential length n and the
periodic length m as 3 and 2, respectively. As with ST-ResNet [35],
the ResNet described in Section 5.4 is composed of 12 residual units.

BikeNYC Dataset: This dataset is generated with the NYC bike
trajectory data, which contains 4,392 available time intervals crowd
flow maps with the size of 2 × 16 × 8. The data of the last ten days
are chosen to be the test set. As for external factors, 20 categories of
the holiday are recorded. In this dataset, we set the sequential length
n as 5 and the periodic length m as 7. For a fair comparison with
ST-ResNet [35], we also utilize a ResNet described in Section 5.4
with 4 residual units to extract the crowd flow feature.

We adopt Root Mean Square Error (RMSE) as evaluation metric
to evaluate the performances of all the methods, which is defined
as:

RMSE =

√√
1
z

z∑
i=1

(Ŷi − Yi )
2
, (9)

where Ŷi and Yi represent the predicted flow map and its ground
truth map, respectively. z indicates the number of samples used for
validation.

6.2 Comparison with the State of the Art
We compare our method with six state-of-the-art methods, includ-
ing Auto-Regressive Integrated Moving Average (ARIMA) [2], Sea-
sonal ARIMA (SARIMA) [29], Vector Auto-Regressive (VAR) [22],
ST-ANN [35], DeepST [36] and ST-ResNet [35]. For these compared
methods, we use the performances provided by Zhang et al. [35] as
their results.

Table 1 summarizes the performance of the proposed method
and other six methods. On TaxiBJ dataset, our method decreases

Session: FF-5 MM’18, October 22-26, 2018, Seoul, Republic of Korea

1557



Model RMSE
PCNN 33.44

PRNN-w/o-Attention 32.97
PRNN 32.52
SCNN 17.48

SRNN-w/o-Attention 16.62
SRNN 16.11

SPN-w/o-Fusion 16.01
SPN 15.40

Table 2: Quantitative comparisons (RMSE) of different vari-
ants of ourmodel on TaxiBJ dataset for component analysis.

the RMSE from 16.69 to 15.40 when compared with current best
model, and achieves a relative improvement of 7.7%. Our method
also boosts the prediction accuracy on BikeNYC, i.e., decreases
RMSE from 6.33 to 5.64. Note that some compared methods, e.g.,
ST-ANN, DeepST and ST-ResNet, also employ deep learning tech-
niques. Experimental results demonstrate that our proposed ACFM
is able to explicitly model the spatial-temporal feature as well as
the attention weighting of each spatial influence, which greatly
outperforms the state-of-the-art. Some crowd flow prediction maps
of our full model on TaxiBJ dataset are shown on the second row
of the Fig. 5. As can be seen, our generated crowd flow map is
consistently closest to those of the ground-truth, which is accord
with the quantitative RMSE comparison.

6.3 Ablation Study
Our full model for citywide crowd flow prediction consists of three
components: sequential representation learning, periodic represen-
tation learning and temporally-varying fusion module. For conve-
nience, we denote our full model as Sequential-Periodic Network
(SPN) in the following experiments. To show the effectiveness of
each component, we implement seven variants of our full model
on the TaxiBJ dataset:
• PCNN: directly concatenates the periodic features Pin and
feeds them to a convolutional layer with two filters followed
by tanh to predict future crowd flow;
• SCNN: directly concatenates the sequential features Sin and
feeds them to a convolutional layer followed by tanh to
predict future crowd flow;
• PRNN-w/o-Attention: takes periodic features Pin as input
and learns periodic representation with a LSTM layer to
predict future crowd flow;
• PRNN: takes periodic features Pin as input and learns pe-
riodic representation with the proposed ACFM to predict
future crowd flow;
• SRNN-w/o-Attention: takes sequential features Sin as in-
put and learns sequential representation with a LSTM layer
for crowd flow estimation;
• SRNN: takes sequential features Sin as input and learns
sequential representationwith the proposedACFM to predict
future crowd flow;
• SPN-w/o-Fusion: directlymerges sequential representation
and periodic representation with equal weight (0.5) to predict
future crowd flow.

Effectiveness of SpatialAttention:As shown in Table 2, adopt-
ing spatial attention, SRNN decreases the RMSE by 0.51, compared
to SRNN-w/o-Attention. For another pair of variants, PRNN with
spatial attention has the similar performance improvement, com-
pared to PRNN-w/o-Attention. Fig. 3 and Fig. 4 show some atten-
tional maps generated by our method as well as the residual maps
between the input crowd flowmaps and their corresponding ground
truth. We can observe that there is a negative correlation between
the attentional maps and the residual maps. It indicates that our
ACFM is able to capture valuable regions at each time step andmake
better predictions by inferring the trend of evolution. Roughly, the
greater difference a region has, the smaller its weight, and vice versa.
We can inhibit the impacts of the regions with great differences
by multiplying the small weights on their corresponding location
features. With the visualization of attentional maps, we can also
get to know which regions have the primary positive impacts for
the future flow prediction. According to the experiment, we can
see that the proposed model can not only effectively improve the
prediction accuracy, but also enhance the interpretability of the
model to a certain extent.

Effectiveness of Sequential Representation Learning: As
shown in Table 2, directly concatenating the sequential features S
for prediction, the baseline variant SCNN gets an RMSE of 17.48.
When explicitlymodeling the sequential contextual dependencies of
crowd flow using the proposed ACFM, the variant SRNN decreases
the RMSE to 16.11, with 7.8% relative performance improvement
compared to the baseline SCNN, which indicates the effectiveness
of the sequential representation learning.

Effectiveness of PeriodicRepresentationLearning:Wealso
explore different network architectures to learn the periodic repre-
sentation. As shown in Table 2, the PCNN, which learns to estimate
the flow map by simply concatenating all of the periodic features P ,
only achieves RMSE of 33.44. In contrast, when introducing ACFM
to learn the periodic representation, the RMSE drops to 32.52. This
further demonstrates the effectiveness of the proposed ACFM for
spatial-temporal modeling.

Effectiveness of Temporally-Varying Fusion:When directly
merging the two temporal representations with an equal contri-
bution (0.5), SPN-w/o-fusion achieves a negligible improvement,
compared to SRNN. In contrast, after using our proposed fusion
strategy, the full model SPN decreases the RMSE from 16.11 to 15.40,
with a relative improvement of 4.4% compared with SRNN. The
results show that the significance of these two representations are
not equal and are influenced by various factors. The proposed fu-
sion strategy is effective to adaptively merge the different temporal
representations and further improve the performance of crowd flow
prediction.

Further Discussion: To analyze how each temporal represen-
tation contributes to the performance of crowd flow prediction,
we further measure the average fusion weights of two temporal
representations at each time interval. As shown in the right of Fig. 6,
the fusion weights of sequential representation are greater than
that of the periodic representation at most time excepting for wee
hours. Based on this observation, we can conclude that the sequen-
tial representation is more essential for the crowd flow prediction.
Although the weight is low, the periodic representation still helps
to improve the performance of crowd flow prediction qualitatively
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Figure 3: Illustration of the generated attentional maps of the crowd flow in periodic representation learning with m set
as 2. Every three columns form one group. In each group: i) on the first row, the first two images are the input periodic
inflow/outflow maps and the last one is the ground truth inflow/outflow map of next time interval; ii) on the second row, the
first two images are the attentional maps generated by our ACFM, while the last one is our predicted inflow/outflow map; iii)
on the third row, the first two images are the residual maps between the input flow maps and the ground truth, while the last
one is the residual map between our predicted flow map and the ground truth.
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Figure 4: Illustration of the generated attentional maps of the crowd flow in sequential representation learning with n set
as 3. Every four columns form one group. In each group: i) on the first row, the first three images are the input sequential
inflow/outflow maps and the last one is the ground truth inflow/outflow map of next time interval; ii) on the second row, the
first three images are the attentional maps generated by our ACFM, while the last one is our predicted inflow/outflow map;
iii) on the third row, the first three images are the residual maps between the input flowmaps and the ground truth, while the
last one is the residual map between our predicted flow map and the ground truth.
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Figure 5: Visual comparison of predicted flow maps of dif-
ferent variants on TaxiBJ dataset. The first two columns are
inflow maps and the other two columns are outflow maps.
The first row is the ground truth maps of crowd flow, while
the bottom three rows are the predicted flow maps of SPN,
SRNN and PRNN respectively. We can observe that i) the
combinations of PRNN and SRNN can help to generatemore
precise crowd flow maps and ii) the difference between the
predicted flow maps of our full model SPN and the ground
truth maps are relatively small.
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Figure 6: The average fusion weights of two types of tempo-
ral representation on TaxiBJ testing set.We can find that the
weights of sequential representation are greater than that of
the periodic representation, which indicates the sequential
trend is more essential for crowd flow prediction.

and quantitatively. Fusing with periodic representation, we can
decrease the RMSE of SRNN by 4.4% and generate more precise
crowd flow maps, as shown in Table 2 and Fig. 5.

7 CONCLUSION
This work studies the spatial-temporal modeling for crowd flow
prediction problem. To incorporate various factors that affect the
flow changes, we propose a unified neural network module named

Attentive Crowd Flow Machine (ACFM). In contrast to the exist-
ing flow estimation methods, our ACFM explicitly learns dynamic
representations of temporally-varying data with an attention mech-
anism and can infer the evolution of the future crowd flow from
historical crowd flow maps. A unified framework is also proposed
to merge two types of temporal information for further predic-
tion. According to the extensive experiments, we have exhaustively
verified the effectiveness of our proposed ACFM on the task for
citywide crowd flow prediction.
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